Sec. 10.2 Invertibility and Properties of Inverse Functions

Definition of an Inverse Function:

Suppose Q = f(t) is a function with the property that each value of Q determines exactly one value of t. Then f has an **inverse function**, f, and

$$f(Q) = t$$
 if and only if $Q = f(t)$.

If a function has an inverse, it is said to be invertible.

Ex: Find a solution to the equation $\sin x = 0.8$ using an inverse function.

$$X = \sin^{-1}(.8)$$
 or $\sin^{-1}(.8) = X$

Ex: Suppose you deposit \$500 into a savings account that pays 4 percent interest compounded annually. The balance, in dollars, in the account after t years is given by $B = f(t) = 500 (1.04)^{t}$.

a. Find a formula for $t = f^{1}$ (B).

a. Find a formula for
$$t = f^{-1}(B)$$
.

$$B = 500 (1.04)^{\frac{1}{2}} \qquad t = f^{-1}(B) = \frac{\log(B)}{500}$$

$$\frac{109(B)}{500} = 1.04^{\frac{1}{2}}$$

$$\log(B) = \log(1.04)$$

$$\log(B) = \log(1.04)$$

$$\log(B) = \log(1.04)$$

$$\log(B) = \log(1.04)$$

$$\log(1.04)$$

b. What does the inverse function represent in terms of the account?

Ex: Find the inverse of the function f(x) = 3x/(2x + 1).

$$y = \frac{3x}{2x+1}$$

$$x = \frac{3y}{2y+1}$$

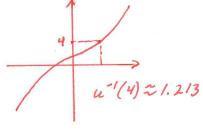
$$x = \frac{3y}{2y+1}$$

$$x = \frac{3y}{3-2x} = y$$

$$x = \frac{x}{3-2x}$$

The Horizontal Line Test

If there is a horizontal line that intersects a function's graph in more than one point, then the function does not have an inverse. If every horizontal line intersects a function's graph at most once, then the function has an inverse.


The graph of $q(x) = x^2$ fails the horizontal line test, so $q(x) = x^2$ has no inverse.

Ex. Let $u(x) = x^3 + x + 1$. Explain why a graph suggests the function is invertible.

Assuming u has an inverse, estimate u⁻¹ (4).

Passes the horizontal line test.

Example 5

Let $P(x) = 2^x$.

- (a) Show that P is invertible.
- (b) Find a formula for P(x).
- (c) Sketch the graphs of P and P on the same axes.
- (d) What are the domain and range of P and P?

$$y = 2^{x}$$

$$x = 2^{y}$$

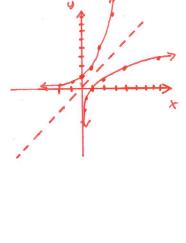
$$\log x = \log 2$$

$$\log x = y \cdot \log 2$$

$$\log x = y$$

$$\log x = y$$

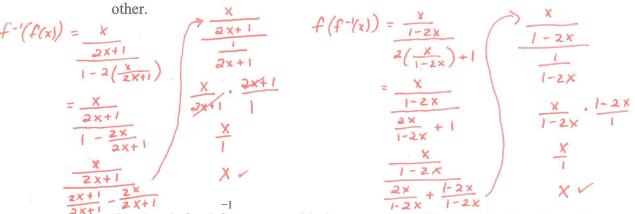
Domain of P: ALL REALS
Range of P: P(x)>0

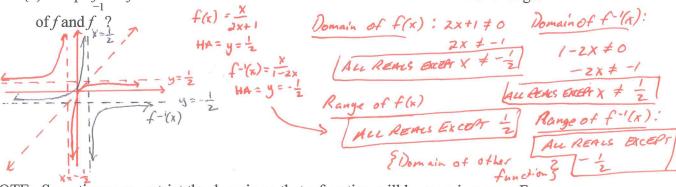

Domain of P': X >0
Range of P: ALL REALS

$$P^{-1}(x) = \frac{\log x}{\log 2} = \frac{1}{\log 2} \cdot \log x$$

$$P^{-1}(x) = 3.222 \log x$$

The Graph, Domain, Range and Inverse of a Function:


- Graph of f is reflection of graph of f across the line y = x.
- Domain of f = Range of f
- Range of f = Domain of f


If y = f(x) is an invertible function and y = f(x) is its inverse, then

- f(f(x)) = x for all values of x for which f(x) is defined,
- f(f(x)) = x for all values of x for which f(x) is defined.

Ex: (a) Check that f(x) = x/(2x + 1) and f(x) = x/(1 - 2x) are inverse functions of each

(b) Graph f and f on axes with the same scale. What are the domains and ranges

NOTE: Sometimes we restrict the domain so that a function will have an inverse. For example, in Section 8.4 we restricted the domains of the sine, cosine, and tangent functions in order to define their inverse functions:

$$y = \sin^{-1} x$$
 if and only if $x = \sin y$ and $-\pi/2 \le y \le \pi/2$
 $y = \cos^{-1} x$ if and only if $x = \cos y$ and $0 \le y \le \pi$
 $y = \tan^{-1} x$ if and only if $x = \tan y$ and $-\pi/2 < y < \pi/2$

YOU MAY NEED TO DO THIS TO WORK WITH A SPECIFIC PART OF THE GRAPH!